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C:3 Matrix sampling is a sampling scheme in which samples of test items are

La
administered to samples of subjects. Inference can then be made to a population

of subjects, a population of items, or both.

lt,quentiv. the nroblem_of interest is the estimation of what the dis-

tribution of scores would be like had all the subjects taken all the items. The

given information, of course, is the distributions of scores on the item samples

by the samples of subjects. At present, there are three methods of estimating

norms from item samples. This paper will present a fourth. This latest technique

has a different theoretical framework and thus has advantages and disadvantages

different from those now available.

Collecting data using matrix sampling. A test containing K items is divided

into t subtests, each subtest containing k items. The subtests are formed by

randomly selecting the items from the total test without replacement. Each of

the subtests is then administered to n subjects. Although other sampling plans

can be used (see Shoemaker, 1971 for a more complete exposition of the advantages

and applications of matrix sampling techniques), this will be the plan used for

the development of the model presented in this paper.

Currently available techniques. Three methods of estimating total-test

score distributions from matrix sample results are currently available. The first,

due to Keats and Lord (1962), uses the negative hypergeometric distribution as a

model for total-test scores. The sufficient parameters are total-test mean and

variance, and K. Previous work by Lord (1960) provides the necessary calculations

to fit the negative hypergeometric. The negative hypergeometric has been used

'Presented at the 1973 AERA meeting, New Orleans.
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successfully many times to estimate total-test score distributions. However,

the assumptions underlying the model are very restrictive and it is not difficult

to find examples of tests which would violate the assumptions to the extent that

one would have little confidence in using results based upon the negative hyper-

geometric.

A second method for estimating total-test scores is due to Kleinke (1969).

This technique predicts a total-test score for each individual using linear

ression. The combination of all estimated total-test scoiii-YEE/dg-the

estimated total-test score distribution. A major disadvantage of this technique

is the severe jaggedness of the estimated distributions.

A third method for estimating the total-test score distributions is the

empirical Bayes' estimation technique, used by Lord (1969). This method uses

an empirical Bayesian procedure to obtain minimum squared error estimators for

total-test score parameters. Its major disadvantage is the requirement of large

amounts of data to avoid uninterpretable results. Also, no unique solution can

be found to any problem unless one makes some further assumptions.

The _general framework of the proposed model. The models noted above, either

directly or by implication, make use of a true-score model. That is, given a

distribution of scores on an item sample, one does not make a direct estimate of

the distribution of scores on the total-test. Since Scores from both distributions

contain error, it is first necessary to estimate some error-free distribution

based on the item sample results, use that estimate to predict the shape of the

error-free distribution on the total-test, and then add the error back in to

obtain an estimated total-test score distribution.

As noted above, the error-free distribution used in the past has been the

,true-score distribution. The model proposed by this paper utilizes what has been

called a "guessing-free" distribution as the intermediate step. A guessing-free

distribution is the distribution of scores obtained when no one guesses at any



item, but answers only those questions of which he is sure of the answer.

The model is used in the construction of an intermediate step in much the

same way that the true-score models were used in earlier methods. Thus, the

observed scores on the item sample will be used to estimate the guessing-free

distribution on the item sample. The second step is to use these results to

estimate the guessing-free distribution on the full test. This is then used to

estimate what the total-test score distribution would have looked like if all

subjects had taken all the items, rather than just a sample-of-a-em.

The proposed model. As a beginning, to test whether there was any future

in using guessing-free distributions to estimate total-test results, the simplest

possible model for estimating the guessing-free distributions was used. The

model simply views an individual's correct response on an item as having possibly

occurred by one of only two ways--he knew the answer, and thus chose the correct

response with certainty, or he did not know it, and randomly chose an alternative.

Another simplification is the assumption of population data on each sample.

Under these assumptions, an observed score distribution is simply the combination

of two simpler distributions: the guessing-free distribution and the distribution

of guesses.

The distribution of guesses, under the stated assumptions, is a binomial on

the remaining items. Thus, if f(x) is the distribution of observed scores and

g(x) is the distribution of guessing-free scores,

f(x) = x-i k-x
P q g"'x -il

(1)

p = 1/# of options per question, and
q = 1 - p.

From (1) it can be shown (Hill, 1972, pg. 113) that

x 4.
g(x) =

i=E
(7".1(11)X.4 qi-k f(i)0

(2)
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This allows us now to calculate a guessing-free distribution from an

observed-score distribution and vice versa. The remaining step is to calculate

the guessing-free distribution on the full test given the guessing-free distri-

bution on the item sample.

This is clearly a hypergeometric problem, since items from the full test

are randomly sampled without replacement. Thus, if an individual has a

guessing-free score of a on the full test, the probability that his guessing-

-------1-f.e'E''''sno.re-on...she item _s.ample-will be b is:

( a) (kt-a
P(b) a) b k-b if b < a < k(t-1) (3)

(tt)

=0 otherwise

If h(x) is the distribution of guessing-free scores on the full test, then

kt
g(x) = E P(xli) h(i)

i=0

(4)

Unfortunately, no unique solution for h(x) exists (Hill, 1972, pg. 28).

However, it is possible to calculate the first k moments of the guessing-free

distribution on the full test, given the first k moments of the guessing-free

distribution on the item sample. The method for doing so will not be shown

here, but is available from Hill (1972, pp. 25-30).

The remaining problem, then, is to find what problems exist in attempting

to define a distribution that ranges over kt +l points when only k moments are

known. Although no unique solution exists, it is possible that the family of

possible solutions is so similar that the errors of sampling would outweigh the

problem of non-uniqueness, and the selection of any arbitrary distribution from

the family of possible solutions would yield satisfactory results.

Defining maximally different distributions. Since there is no unique

solution, the question arises as to how different any two possible solutions could
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bt, since if the, differences are small, they might be insignificant compared to

other problems likely to be encountered in item sampling. It will be necessary

to define operationally the term "maximally different."

One possible definition entails the use of the Kolmogorov-Smirnov D

statistic, which is the maximum difference between two cumulative-frequency

distributions. This statistic was not used in the definition, because no way

was discovered to maximize D between two distribut-ionG Other possibilities

included maximizing y.2 or some similar statistic, but trying to maximize a

statistic by changing two distributions simultaneously has proved intractable.

Since the problem of non-uniqueness can be considered to be caused by the lack of

well-defined higher-order moments, it seems plausible to use as a criterion of

maximal difference the maximally different higher-order moments. At first, it

seems as though a problem might be encountered in deciding which moment to use

for the definition; i.e., if the first five moments are uniquely determined,

should the two maximally different solutions be defined as those which maximize

the differences in the sixth moment, the seventh moment, or the ktth moment?

It can be demonstrated that it makes no difference which moment is chosen, because

the solution remains the same.

maximizing the difference between undefined higher-order moments. Maximizing

the difference between a moment of two distributions is not difficult because one

can find the distribution that maximizes the moment, another that minimizes it,

and have the solution. It is wuch easier to operate this way, for by solving for

one distribution at a time (rather than by finding both simultaneously, as would

be necessary with the Kolmogorov-Smirnov D), one can use linear programming. The

following linear constraints can be set up from the estimated moments which have

been calculated:
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kt
E it h(i) = E(hr)
1=0

C < r < .k

The following becomes the objective function:

mn
E iP h(i), where p is the moment to
i=0 be maximized.

The objective function, of course, is simply the 2.th moment around the origin.

IFEililnriK4ih-malipliggAgalminimized through linear programming, yielding the

two sets of number-known score distributions that are, by the definition adopted

above, maximally different.

The first question which comes to mind is deciding which moment to maximize

and minimize. The answer is that it does not matter. The same solution will be

obtained no matter uhich moment is chosen. The proof for this is presented in

Appendix B of Hill (1972).

Convergence of maximum and minimum distributions. It was intended to use

linear programming in the following manner to arrive at a solution:

1. Find the distributions that will maximize and minimize the kflth moment,

given the constraints of the first k moments.

2. Under the constraint of the boundales defined by the two distributions

calculated in step 1, maximize and minimize the k+2th moment.

3. Under the constraints of the new boundaries calculated in step 2,

maximize and minimize the k+3th moment.

4. Continue opeating until the differences betteen the maximizing and

minimizing distributions are very small, or the iterative process is done

for the ktth moment.

There is a flaw in the proposed solution, however, since given only the

first k moments of a distribution over kt +l points, there should be no unique

solution. But if this approach worked, there would be.
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Of course, this approach failed, because the functions do not converge. Once

step 1 has been completed, further calculations are meaningless, for the same

solution sets are obtained every time. For this reason, the following approach

was proposed to arrive at a final solution:

1. Find the distributions that will maximize and minimize the k+lth moment,

given the constraints of the first k.

2_ calculate-the mean of the minimum and maximum values of the k+lth

moment, and use this number as the value of it.

3. Calculate the minimum and maximum of the k+2th moment, under the

constraint of the first k moments and the mean calculated in step 2.

4. Calculate. the mean of these two moments, and use them as another

constraint to minimize and maximize the k+3th moment.

5. Continue in this manner until the differences between the minimum and

maximum distributions obtained are very small, or the iterative process is

done for the ktth moment.

This solution system is not preferable to the first, for it adds something

which is not there. It assumes that the undefined higher-order moments are the

means of their constrained minimum and maximum possible values. It does have a

major advantage over other possible solutions, however, in that a solution is

always obtained. It will be shown, moreover, that the solution sets are fairly

well defined after the first k moments are calculated, if k is any substantial

size at all. This further work acts as a refinement only. It is an attempt to

arrive at a unique solution, rather than have two similar distributions to report.

Lack of solutions due to sampling. error. Preliminary investigation of the

approach which was outlined above yielded some results which in one sense were

very disappointing, yet in another sense, demonstrated the similarity of any two

solutions very well. The problem encountered involved the lack of solutions due
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to sampling error. An example will help to clarify that statement.

Data were collected on a 25 item test, which had been divided into 5 item

samples of 5 items each. Each item had five options. Each of the samples was

administered to approximately 130 people.

follows:

X f

The results for one sample were as

.E.

0 5 :03947

1 10 .0787

2 26 .2047

3 19 .1496

4 32 .2520

5 35 .2756

The estimated guessing-free score distribution was:

X

0 .1201

1 .0721

2 .2941

3 .0304

4 .2642

5 .2190

The estimated total-test mean and variance were 16.61 and 35.86, respectively,

which are close to the criterion total-test values of 17.08 anti 29.03, obtained

from a sample of 602 subjects.

The first five moments of the item sample guessing-free known score distri-

bution were as follows:
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Moment Value

1 2.9035

2 11.2254

3 47.5344

4 211.7729

5 971.8896

These yielded the followd omentt for the guessing-free score

distribution on the total-test:

Moment Value

1 14.5177

2 264.1731

3 5286.5078

4 111439.8125

5 2338562.0000

The values seem reasonable. However, there is no distribution which can be

constructed for a 25 item test that has these 5 moments. Given the first four

moments, it can be shown, using linear programming, that the value for the fifth

moment must lie between 2,409,923 and 2,441,843.

As pointed out above, this result is both encouraging and discouraging.

First, it is discouraging because no solution can be found. Second, however, it

is very encouraging, because it implies that the random sampling fluctuation in

the fifth moment is greater than any error in the theory due to non-uniqueness

of a solution. That is, this result indicates that the difference between any

two solutions we might arrive at due to being able to estimate only the first

five moments are less than the differences we might expect to find from random

sampling fluctuations. This gives confidence to the original assumption that

any way of getting the final solution after fixing the first n moments is
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credible. The error in the difference between any two plausible solutions is

probably substantially less than the sampling error involved.

To avoid the problem of estimating impossible moments, the method of

arriving at a final estimated number-known score distribution has been revised

as follows:

1. Each estimated moment is checked, in order, to see if it is a possible

value, given the values of the lower-order moments. If all estimated

moments are plausible, go to step 3. Upon discovering an impossible value,

go to step 2.

2. The mcment -estimated by the equations lies outside the minimum and

maximum possible values, given the estimated lower -order moments. Therefore,

discard the estimated value and use the mean of the maximum and minimum

possible values.

3. Calculate the minimum and maximum value of the next higher order moment,

and use the mean of these two values to be the estimate for that moment.

4. Calculate the values for the next high-order moment, as in step 3.

Continue until the values are close to each other, or until the ktth

moment has been estimated.

This technique insures that a solution will be found. Some of the moments

of the solution may not be equal to the estimated moments, but this will be true

only if the higher order estimated moments have been shown to have impossible

values, due to sampling error.

We now have developed all the steps necessary to estimate a total-test

score distribution given the observed scores on an item sample. Using equation

(2), it is possible to estimate the guessing-free distribution on the item

sample. From these results, we can use the procedure outlined above to estimate



the guessing-free diaribution on the full test. This result yields an

estimated total-test score distribution from equation (1).

The results of this model to date have been encouraging. One study has

shown it to be at least as effective as either the hypergeometric or linear

prediction in estimating total-test score distributions (Hill, 1972). It is

anticipated that ele use of more sophisticated techniques in estimating the

guessing-free distribution will reduce the errors of prediction.
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